Dr. Marques Sophie Office 519 Number theory

Spring Semester 2014 marques@cims.nyu.edu

Problem Set #11

Exercise 1 p 71

Let A be an arbitrary ring, not necessarily an integral domain, let M be an A-module and S a multiplicatively closed subset of A such that $0 \notin S$. In $M \times S$ consider the equivalence relation

$$(m,s) \sim (m',s') \Leftrightarrow \exists s'' \in S \text{ such that } s''(s'm-sm') = 0$$

Show that the set M_S of equivalence classes (\overline{m}, s) forms an A-module, and that $M \to M_S$, $a \mapsto (\overline{a}, 1)$, is a homomorphism. In particular, A_S is a ring. It is called the **localization** of A with respect to S.

Solution:

For convenience, we will write $\frac{m}{s} := \overline{(m,s)}$.

We want to prove that the set M_S of the equivalence relation forms an A-module. For this we define two operation + and \cdot on M_S , as for any $m, n \in M$, $s, t \in S$ and $a \in A$,

$$\frac{m}{s} + \frac{n}{t} := \frac{tm + sn}{st}$$

 $a \cdot \frac{m}{s} := \frac{am}{s}$

and

Since it is equivalence classes we have to check that it is well defined. For this, let $m', n' \in M$, and $s', t' \in S$ such that $\frac{m}{s} = \frac{m'}{s'}$ and $\frac{n}{t} = \frac{n'}{t'}$, that is there exists $s'', t'' \in S$ such that

$$s''(s'm - sm') = 0$$
 and $t''(t'n - ts') = 0$

. We need to prove that

$$\frac{tm+sn}{st} = \frac{t'm'+s'n'}{s't'}$$

that is there exist $r \in S$ such that

$$r((tm + sn)s't' - (t'm' + s'n')st) = 0$$

Put r = s''t'', then

$$r((tm+sn)s't' - (t'm'+s'n')st) = s''t''((tm+sn)s't' - (t'm'+s'n')st)$$

= $tt's''(s'm-sm') - ss't''(t'n-ts')$
= $0 - 0 = 0$

Similarly, we prove that $\frac{am}{s} = \frac{am'}{s'}$. To prove that f is a homomorphism, we have to prove that

- 1. For any $m, n \in M$, f(m+n) = f(m) + f(n), that is $\frac{m+n}{1} = \frac{m}{1} + \frac{n}{1}$, and this is also clear by the definition of the operation which make M_S into a A-module.
- 2. For any m ∈ M and a ∈ A, f(am) = af(m), that is am/1 = a ⋅ m/1 and this is also clear.
 Moreover, A_S is a ring, with unit 1/1, neutral element 0/1 and the multiplication defined by

$$\frac{m}{s} \cdot \frac{n}{t} = \frac{mn}{st}$$

As before we can easily check that it is well defined.

Exercise 2 p 72

Show that, in the above situation, the prime ideals of A_S correspond 1-1 to the prime ideals of A which are disjoint from S. If $\mathfrak{p} \subseteq A$ and $\mathfrak{p}_S \subseteq A_S$ correspond in this way, then A_S/\mathfrak{p}_S is the localization of A/\mathfrak{p} with respect to the image of S.

Solution:

The one-to-one correspondence is given by associating to a prime ideal Q of A_S the ideal $Q \cap A$ of A and associating to a prime ideal \mathfrak{q} of A disjoint from S the ideal $\mathfrak{q}A_S$ of A_S .

It is well define since when Q is a prime ideal of A_S clearly $Q \cap A$ is a prime ideal of A and if \mathfrak{q} is a prime ideal of A disjoint from S, then $\mathfrak{q}A_S$ is a prime ideal of A_S , indeed let $\frac{a}{s}$ and $\frac{a'}{s'}$ such that $\frac{aa'}{ss'} \in \mathfrak{q}A_S$, that is $\frac{aa'}{ss'} = \frac{q}{t}$ for some $q \in \mathfrak{q}$ and $t \in S$. So that, there is a $r \in S$ such that r(aa't - ss'q) = 0 and $rtaa' = rss'q \in \mathfrak{q}$ but since $rt \notin \mathfrak{q}$ and \mathfrak{q} is a prime ideal then $aa' \in \mathfrak{q}$ and so as \mathfrak{q} is a prime ideal again $a \in \mathfrak{q}$ or $a' \in \mathfrak{q}$ and $\mathfrak{q}A_S$ is a prime ideal.

Now, we need to prove $(Q \cap A)A_S = Q$ and $\mathfrak{q}A_S \cap A = \mathfrak{q}$. Clearly, $(Q \cap A)A_S \subseteq Q$. Let $q \in Q$, then $q = \frac{u}{s}$ with $u \in a$ and $s \in S$, then $qs = u \in Q \cap A$ and $q \in (Q \cap A)A_S$.

Clearly, $\mathbf{q} \subseteq \mathbf{q}A_S \cap A$. Now, $a \in \mathbf{q}A_S \cap A$, then $a = \frac{q}{s}$ then $as = q \in \mathbf{q}$ but $s \notin \mathbf{q}$ and \mathbf{q} is a prime ideal. Then $a \in \mathbf{q}$.

Now, we prove that A_S/\mathfrak{p}_S is the localization $(A/\mathfrak{p})_{f(S)}$ where $f: A \to A/\mathfrak{p}$. We define the morphism,

$$\phi: A_S \to (A/\mathfrak{p})_{f(S)}$$
$$\xrightarrow{a}{s} \mapsto \xrightarrow{f(a)}{f(s)}$$

It is well defined since $\frac{a}{s} = \frac{a'}{s'}$, then there is a $t \in S$ such that t(s'a - sa') = 0 but then f(t)(f(s')f(a) - f(s)f(a')) = 0 so that $\frac{f(a)}{f(s)} = \frac{f(a')}{f(s')}$. We can prove that ϕ is a surjective homomorphism with kernel \mathfrak{p}_S .

Exercise 3 p 72

Let $f: M \to N$ be a homomorphism of A-modules. Then the following conditions are equivalent:

- 1. f is injective (surjective).
- 2. $f_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective (surjective) for every prime ideal \mathfrak{p} .
- 3. $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is injective (surjective) for every maximal ideal \mathfrak{m} .

Solution:

First we prove the following result: Let M be an A-module. Then TFAE:

- 1. M = 0;
- 2. $M_{\mathfrak{p}} = 0$, for all prime ideal \mathfrak{p} ;
- 3. $M_{\mathfrak{m}} = 0$, for all maximal ideal \mathfrak{m} ;

Proof: $1. \Rightarrow 2. \Rightarrow 3$. is obvious, so it remains only to prove that $3. \Rightarrow 2$. Suppose that 3. hold and M is not the zero module. Hence, there is an $x \in M, x \neq 0$. Now,

 $Ann(x) = \{a \in A | a \in A, ax = 0\} \subseteq A$

and certainly $1 \notin Ann(x)$, then $Ann(x) \subseteq \mathfrak{m}$, for some maximal ideal \mathfrak{m} of A. But, by 3., we have $M_{\mathfrak{m}} = 0$. In particular, x/1 is zero in $M_{\mathfrak{m}}$. Hence, there is a $u \in A \setminus \mathfrak{m}$, such that $u(1 \cdot x - 1 \cdot 0) = ux$. So $u \in Ann(x) \subseteq \mathfrak{m}$, contradicting that $u \notin \mathfrak{m}$. Thus M = 0, so 1. holds and the result is proved.

We prove now the injective case.

1. \Rightarrow 2. If f is injective then $f_{\mathfrak{p}} : M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective. Let $\frac{m}{s} \in ker(f_{\mathfrak{p}})$, then $f(\frac{m}{s}) = \frac{f(m)}{f(s)} = 0$, so that there is a $t \in 1 \setminus \mathfrak{p}$ such that tf(m) = 0, so that f(tm) = 0 and since f is surjective tm = 0 and $\frac{m}{s} = 0$. This prove the injectivity of f. 2. \Rightarrow 3. is obvious.

 $3. \Rightarrow 1.$ Suppose that 3. holds, and put $M' = ker(\phi)$. Then

$$0 \longrightarrow M' \xrightarrow{\phi} M \longrightarrow N$$

is exact where the second mapping is inclusion. For each maximal ideal \mathfrak{m}

$$0 \longrightarrow M'_{\mathfrak{m}} \xrightarrow{\phi} M_{\mathfrak{m}} \longrightarrow N_{\mathfrak{m}}$$

is exact, so that

$$M'_{\mathfrak{m}} = ker(\phi_{\mathfrak{m}}) = 0$$

by 3., since $\phi_{\mathfrak{m}} = 0$ is injective. Using the result, staten at the beginning we get that M' = 0 which prove that ϕ is injective.

The surjectivity is obtained similarly reversing the arrows in the previous argument and using the image instead of the kernel.

Exercise 5 p 72

Let $f : A \to B$ be a homomorphism of rings and S a multiplicatively close subset of A such that $f(S) \subseteq B^*$. Then f induces a homomorphism $g : A_S \to B$. Solution:

We can define the morphism g as follow:

If is well defined since $f(S) \subseteq B^*$ and if $\frac{a}{s} = \frac{a'}{s'}$ that is $u \in S$ such that u(s'a - sa') = 0, then f(u(s'a - sa')) = f(0) = 0, and since f is a morphism, f(u)(f(s')f(a) - sa') = f(a) = 0.

f(s)f(a') = 0 that is $\frac{f(a)}{f(s)} = \frac{f(a')}{f(s')}$. Now, g is a homomorphism since for any $\frac{a}{s}, \frac{a'}{s'}$, we have

$$g(\frac{a}{s} + \frac{a'}{s'}) = g(\frac{as' + a's}{ss'}) = \frac{f(a)f(s') + f(a')f(s)}{f(s)f(s')} = \frac{f(a)}{f(s)} + \frac{f(a')}{f(s')} = g(\frac{a}{s}) + g(\frac{a'}{s'})$$
$$g(\frac{a}{s}\frac{a'}{s'}) = g(\frac{a}{s})g(\frac{a'}{s'})$$
$$g(\frac{1}{1}) = \frac{1}{1}$$

Note that g is the unique morphism making the following diagram commute:

for f a morphism $f(S) \subseteq B^*$. This define the universal property of the localization. This define the localization.

Exercise 4 p 72

Let S and T be two multiplicative subsets of A, and T^* the image of T in A_S . Then one has $A_{ST} \simeq (A_S)_{T^*}$.

Solution:

Consider the morphism $i_{ST*}: A \to (A_S)_{T^*}$, such that $i_{ST*}(ST) \subseteq T^*$ and $i_{ST*}(S) \subseteq T^*$. Then by the universal property of the localization there is a morphism $g: A_{ST} \to (A_S)T^*$ and $i: A_S \to (A_S)_{T^*}$.

Since $i(ST) \subseteq T^*$. Then by the universal property of the localization there is a morphism $h: (A_S)_{T^*} \to A_{ST}$.

By unicity of the morphism $\phi : A_{ST} \to A_{ST}$ such that $\phi \circ i_{ST} = i_{ST}$, we get that $\phi = Id_{A_{ST}} = h \circ g$. Similarly, we get $g \circ h = Id_{(A_S)_{T^*}}$. And thus the required isomorphism.

Exercise 6 p 72

Let A be an integral domain. If the localization A_S is integral over A, then $A_S = A$. Solution:

Clearly $A \subseteq A_S$. So that it is enough to prove that $A_S \subseteq A$. Let $s \in S$ with $s \nmid b$ or s = 1, then there is $a_i \in A$ such that

$$(\frac{1}{s})^n + a_{n-1}(\frac{1}{s})^{n-1} + \dots + a_0 = 0$$

So that

$$\frac{1 + a_{n-1}s + \dots + a_0s^n}{s^n} = 0$$

since A is integral, that is $1 + a_{n-1}b1 + ... + a_01^n = 0$. But then $1 = a_{n-1}s + ... + a_0s^n$ then it implies that s is a unit. So that, $A_S = A$.

Exercise 7 p 72 (Nakayama's lemma)

Let A be a local ring with maximal ideal \mathfrak{m} , let M be an A-module and $N \subseteq M$ a submodule such that M/N is finitely generated. Then one has the implication:

$$M = N + \mathfrak{m}M \Rightarrow M = N$$

Solution:

Clearly, it is equivalent to prove the following: Let A be a local ring with maximal ideal \mathfrak{m} and a finitely generated A-module such that $M = \mathfrak{m}$. Then M = 0.

For this, let $\{x_1, ..., x_n\}$ be a system of generators of M. We may suppose n minimal. There exist $\alpha_i \in \mathfrak{m}$ such that $x_n = \sum \alpha_i x_i$. Hence $(1 - \alpha_n)x_n = \sum_{i < n} \alpha_i x_i$. As $1 - \alpha_n$ is invertible, and n is assumed to be minimal, it follows that n = 1 and $x_n = 0$.