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Problem Set #11

Exercise 1 p 71
Let A be an arbitrary ring, not necessarily an integral domain, let M be an A-module
and S a multiplicatively closed subset of A such that 0 /∈ S. In M × S consider the
equivalence relation

(m, s) ∼ (m′, s′)⇔ ∃s′′ ∈ S such that s′′(s′m− sm′) = 0

Show that the set MS of equivalence classes (m, s) forms an A-module, and that
M → MS, a 7→ (a, 1), is a homomorphism. In particular, AS is a ring. It is called
the localization of A with respect to S.

Solution:
For convenience, we will write m

s
:= (m, s).

We want to prove that the set MS of the equivalence relation forms an A-module.
For this we define two operation + and · on MS, as for any m,n ∈ M , s, t ∈ S and
a ∈ A,

m

s
+
n

t
:=

tm+ sn

st
and

a · m
s

:=
am

s
Since it is equivalence classes we have to check that it is well defined.
For this, let m′, n′ ∈M , and s′, t′ ∈ S such that m

s
= m′

s′
and n

t
= n′

t′
, that is there exists

s′′, t′′ ∈ S such that

s′′(s′m− sm′) = 0 and t′′(t′n− ts′) = 0

. We need to prove that
tm+ sn

st
=
t′m′ + s′n′

s′t′

that is there exist r ∈ S such that

r((tm+ sn)s′t′ − (t′m′ + s′n′)st) = 0

Put r = s′′t′′, then

r((tm+ sn)s′t′ − (t′m′ + s′n′)st) = s′′t′′((tm+ sn)s′t′ − (t′m′ + s′n′)st)
= tt′s′′(s′m− sm′)− ss′t′′(t′n− ts′)
= 0− 0 = 0

Similarly, we prove that am
s

= am′

s′
.

To prove that f is a homomorphism, we have to prove that
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1. For any m,n ∈ M , f(m + n) = f(m) + f(n), that is m+n
1

= m
1

+ n
1
, and this is

also clear by the definition of the operation which make MS into a A-module.

2. For any m ∈ M and a ∈ A, f(am) = af(m), that is am
1

= a · m
1

and this is also
clear.
Moreover, AS is a ring, with unit 1

1
, neutral element 0

1
and the multiplication

defined by
m

s
· n
t

=
mn

st

As before we can easily check that it is well defined.

Exercise 2 p 72
Show that, in the above situation, the prime ideals of AS correspond 1− 1 to the prime
ideals of A which are disjoint from S. If p ⊆ A and pS ⊆ AS correspond in this way,
then AS/pS is the localization of A/p with respect to the image of S.
Solution:
The one-to-one correspondence is given by associating to a prime ideal Q of AS the
ideal Q ∩A of A and associating to a prime ideal q of A disjoint from S the ideal qAS
of AS.
It is well define since when Q is a prime ideal of AS clearly Q∩A is a prime ideal of A
and if q is a prime ideal of A disjoint from S, then qAS is a prime ideal of AS, indeed
let a

s
and a′

s′
such that aa′

ss′
∈ qAS, that is aa′

ss′
= q

t
for some q ∈ q and t ∈ S. So that,

there is a r ∈ S such that r(aa′t− ss′q) = 0 and rtaa′ = rss′q ∈ q but since rt /∈ q and
q is a prime ideal then aa′ ∈ q and so as q is a prime ideal again a ∈ q or a′ ∈ q and
qAS is a prime ideal.
Now, we need to prove (Q∩A)AS = Q and qAS ∩A = q. Clearly, (Q∩A)AS ⊆ Q. Let
q ∈ Q, then q = u

s
with u ∈ a and s ∈ S, then qs = u ∈ Q ∩ A and q ∈ (Q ∩ A)AS.

Clearly, q ⊆ qAS ∩ A. Now, a ∈ qAS ∩ A, then a = q
s

then as = q ∈ q but s /∈ q and q
is a prime ideal. Then a ∈ q.
Now, we prove that AS/pS is the localization (A/p)f(S) where f : A→ A/p. We define
the morphism,

φ : AS → (A/p)f(S)
a
s
7→ f(a)

f(s)

It is well defined since a
s

= a′

s′
, then there is a t ∈ S such that t(s′a− sa′) = 0 but then

f(t)(f(s′)f(a)− f(s)f(a′)) = 0 so that f(a)
f(s)

= f(a′)
f(s′)

. We can prove that φ is a surjective
homomorphism with kernel pS.

Exercise 3 p 72
Let f : M → N be a homomorphism of A-modules. Then the following conditions are
equivalent:

1. f is injective (surjective).

2. fp : Mp → Np is injective (surjective) for every prime ideal p.

3. fm : Mm → Nm is injective (surjective) for every maximal ideal m.
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Solution:
First we prove the following result: Let M be an A-module. Then TFAE:

1. M = 0;

2. Mp = 0, for all prime ideal p;

3. Mm = 0, for all maximal ideal m;

Proof: 1.⇒ 2.⇒ 3. is obvious, so it remains only to prove that 3.⇒ 2. Suppose that
3. hold and M is not the zero module. Hence, there is an x ∈M , x 6= 0. Now,

Ann(x) = {a ∈ A|a ∈ A, ax = 0} ⊆ A

and certainly 1 /∈ Ann(x), then Ann(x) ⊆ m, for some maximal ideal m of A. But, by
3., we have Mm = 0. In particular, x/1 is zero in Mm. Hence, there is a u ∈ A\m, such
that u(1 · x− 1 · 0) = ux. So u ∈ Ann(x) ⊆ m, contradicting that u /∈ m. Thus M = 0,
so 1. holds and the result is proved.
We prove now the injective case.
1. ⇒ 2. If f is injective thenfp : Mp → Np is injective. Let m

s
∈ ker(fp), then f(m

s
) =

f(m)
f(s)

= 0, so that there is a t ∈ 1\p such that tf(m) = 0, so that f(tm) = 0 and since
f is surjective tm = 0 and m

s
= 0. This prove the injectivity of f .

2.⇒ 3. is obvious.
3.⇒ 1. Suppose that 3. holds, and put M ′ = ker(φ). Then

0 //M ′ φ //M // N

is exact where the second mapping is inclusion. For each maximal ideal m

0 //M ′
m

φ //Mm
// Nm

is exact, so that
M ′

m = ker(φm) = 0

by 3., since φm = 0 is injective. Using the result, staten at the beginning we get that
M ′ = 0 which prove that φ is injective.
The surjectivity is obtained similarly reversing the arrows in the previous argument and
using the image instead of the kernel.

Exercise 5 p 72
Let f : A→ B be a homomorphism of rings and S a multiplicatively close subset of A
such that f(S) ⊆ B∗. Then f induces a homomorphism g : AS → B.
Solution:
We can define the morphism g as follow:

g : AS → B
a
s
7→ f(a)

f(s)

If is well defined since f(S) ⊆ B∗ and if a
s

= a′

s′
that is u ∈ S such that u(s′a− sa′) =

0, then f(u(s′a − sa′)) = f(0) = 0, and since f is a morphism, f(u)(f(s′)f(a) −
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f(s)f(a′)) = 0 that is f(a)
f(s)

= f(a′)
f(s′)

.

Now, g is a homomorphism since for any a
s
,a
′

s′
, we have

g(
a

s
+
a′

s′
) = g(

as′ + a′s

ss′
) =

f(a)f(s′) + f(a′)f(s)

f(s)f(s′)
=
f(a)

f(s)
+
f(a′)

f(s′)
= g(

a

s
) + g(

a′

s′
)

g(
a

s

a′

s′
) = g(

a

s
)g(

a′

s′
)

g(
1

1
) =

1

1

Note that g is the unique morphism making the following diagram commute:

A

f   

// AS

g

��
B

for f a morphism f(S) ⊆ B∗. This define the universal property of the localization.
This define the localization.

Exercise 4 p 72
Let S and T be two multiplicative subsets of A, and T ∗ the image of T in AS. Then
one has AST ' (AS)T ∗ .
Solution:
Consider the morphism iST∗ : A→ (AS)T ∗ , such that iST∗(ST ) ⊆ T ∗ and iST∗(S) ⊆ T ∗.
Then by the universal property of the localization there is a morphism g : AST → (AS)T ∗

and i : AS → (AS)T ∗.
Since i(ST ) ⊆ T ∗. Then by the universal property of the localization there is a mor-
phism h : (AS)T ∗ → AST .
By unicity of the morphism φ : AST → AST such that φ ◦ iST = iST , we get that
φ = IdAST

= h ◦ g. Similarly, we get g ◦ h = Id(AS)T∗ . And thus the required isomor-
phism.

Exercise 6 p 72
Let A be an integral domain. If the localization AS is integral over A, then AS = A.
Solution:
Clearly A ⊆ AS. So that it is enough to prove that AS ⊆ A. Let s ∈ S with s - b or
s = 1, then there is ai ∈ A such that

(
1

s
)n + an−1(

1

s
)n−1 + ...+ a0 = 0

So that
1 + an−1s+ ...+ a0s

n

sn
= 0

since A is integral, that is 1 + an−1b1 + ...+ a01
n = 0. But then 1 = an−1s+ ...+ a0s

n

then it implies that s is a unit. So that, AS = A.
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Exercise 7 p 72 (Nakayama’s lemma)
Let A be a local ring with maximal ideal m, let M be an A-module and N ⊆ M a
submodule such that M/N is finitely generated. Then one has the implication:

M = N + mM ⇒M = N

Solution:
Clearly, it is equivalent to prove the following: Let A be a local ring with maximal ideal
m and a finitely generated A-module such that M = m. Then M = 0.
For this, let {x1, ..., xn} be a system of generators of M . We may suppose n minimal.
There exist αi ∈ m such that xn =

∑
αixi. Hence (1− αn)xn =

∑
i<n αixi. As 1− αn

is invertible, and n is assumed to be minimal, it follows that n = 1 and xn = 0.
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